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The Genetic Dissection of Complex Traits in a Founder Population
Carole Ober,1 Mark Abney,1,2 and Mary Sara McPeek1,2

Departments of 1Human Genetics and 2Statistics, University of Chicago, Chicago

We estimated broad heritabilities (H2) and narrow heritabilities (h2) and conducted genomewide screens, using a
novel association-based mapping approach for 20 quantitative trait loci (QTLs) among the Hutterites, a founder
population that practices a communal lifestyle. Heritability estimates ranged from .21 for diastolic blood pressure
(DBP) to .99 for whole-blood serotonin levels. Using a multipoint method to detect association under a recessive
model we found evidence of major QTLs for six traits: low-density lipoprotein (LDL), triglycerides, lipoprotein (a)
(Lp[a]), systolic blood pressure (SBP), serum cortisol, and whole-blood serotonin. Second major QTLs for Lp(a)
and for cortisol were identified using a single-point method to detect association under a general two-allele model.
The heritabilities for these six traits ranged from .37 for triglycerides to .99 for serotonin, and three traits (LDL,
SBP, and serotonin) had significant dominance variances (i.e., H2 1 h2). Surprisingly, there was little correlation
between measures of heritability and the strength of association on a genomewide screen ( ), suggesting thatP 1 .50
heritability estimates per se do not identify phenotypes that are influenced by genes with major effects. The present
study demonstrates the feasibility of genomewide association studies for QTL mapping. However, even in this
young founder population that has extensive linkage disequilibrium, map densities !!5 cM may be required to
detect all major QTLs.

Introduction

Despite the extensive efforts in laboratories around the
world, in both the public and private sectors, to identify
genes that influence common human diseases that have
complex genetic etiologies, there have been relatively few
successes to date (for examples, see reports by Horikawa
et al. [2000], Hugot et al. [2001], and Tavtigian et al.
[2001]). The difficulties in identifying genes for common
diseases in humans result, in part, from the fact that
these diseases are genetically heterogeneous conditions,
with contributions from low-penetrant, common alleles
and from environmental factors that are often unknown
or unmeasurable. In addition, the true genetic models
that underlie common phenotypes are not known. The
total number of genes that influence susceptibility, as
well as the number of genes that would be detectable in
any particular sample and by any particular analytical
approach, are unknown.

Nonetheless, ongoing debates about the best strate-
gies for identifying common disease genes rely on as-
sumptions about the underlying genetic models (Risch
and Merikangas 1996; Kruglyak 1999; Wright et al.
1999). Whereas choices about the most efficient strat-
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egies would be more informed if the model were known,
there is a dearth of knowledge about the true models
that give rise to diseases with complex modes of inher-
itance. Estimates of risk ratios for relatives of affected
individuals (such as the lR statistic) and of heritability
provide some information on the relative importance of
genetic and familial factors in comparison with non-
shared environmental factors, but such estimates will
not necessarily provide information on the relative con-
tributions of specific genes or on the overall number of
genes that contribute to susceptibility. Furthermore, the
effects of shared environments among first-degree rel-
atives cannot easily be disentangled from the effects of
shared genes on phenotypic trait values among these
same relatives. As a result, estimates of l and of heri-
tability often include the effects of a shared familial
environment as well as shared genes, thereby inflating
estimates of the contribution of genes to the phenotypic
variance (Rice and Borecki 2001).

As a first step in dissecting the genetics of complex
phenotypes, we examined the relationship between es-
timates of heritability and the strength of signals in ge-
nomewide screens for quantitative trait loci (QTL) in a
founder population, the Hutterites. The Hutterites are
a young founder population who practice a communal
farming lifestyle. The small number of founders is ex-
pected to reduce the number of alleles that contribute
to susceptibility, while the Hutterites’ communal life-
style attenuates, to a large degree, the confounding ef-
fects of environmental factors. In particular, all Hut-
terite communities eat a farming diet that is based on
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traditional recipes; individual household environments
are nearly identical within colonies and differ little be-
tween colonies; and other lifestyle factors that are risks
for common diseases are remarkably uniform within
this community. The Hutterites in our study are con-
nected by a known pedigree, and every pair of individ-
uals is related through multiple lines of descent. By con-
sidering correlations between all pairs of individuals
(not just first-degree relatives), we further reduce the
effects of even small differences between familial envi-
ronments on heritability estimates. As a result, estimates
of heritability in this population are expected to more
closely reflect the contribution of genetic variation. In
addition, because nearly all pairs of Hutterites have
nonzero probability of sharing two alleles identical by
descent (IBD), we will have increased power to detect
dominance variance in addition to the additive variance
and will also have increased accuracy in estimation of
the narrow heritabilities (h2) and broad heritabilities
(H2) (Abney et al. 2000). Lastly, the Hutterites’ recent
origins and the resulting extensive linkage disequilib-
rium (LD) allows for genomewide LD (or association)
mapping, which may be more powerful than linkage
studies for identifying genes that contribute to common
diseases (Cardon and Bell 2001).

As part of our genetic studies of complex traits in the
Hutterites, we have measured 20 quantitative traits that
are associated with asthma, diabetes mellitus, cardio-
vascular disease, hypertension, and autism. Genome-
wide screens with 1500 autosomal markers have been
completed in nearly 700 individuals who are related to
one another in a single 13-generation 1,623-person ped-
igree (Abney et al. 2000; Ober et al. 2000). Variance-
component analyses were used to estimate heritabilities
(Abney et al. 2000, 2001). Association mapping for
QTLs included a novel multipoint method for detecting
recessive alleles and a single-point method that allows
a general two-allele model. These analyses were con-
ducted in the entire, intact 1,623-person pedigree. In
earlier reports, we presented estimates of heritability for
10 of these traits (Abney et al. 2000, 2001). In the
present report, we present an overview of the relation-
ship between heritability and the ability to detect allelic
associations to 20 quantitative traits in the Hutterites,
and, from this information, we draw inferences about
the underlying genetic models for these QTLs.

Material and Methods

Sample Composition and Evaluation of Phenotypes

The study subjects include 722 Hutterites who live on
nine communal farms (colonies) in South Dakota. All
Hutterites 15 years of age who were in the colony on
the days of our visits were included in our studies. The

mean age of the participants is 28.7 years (SD 17.0 years;
range 6–89 years). The study participants are descen-
dants of 64 Hutterite ancestors who were born between
the early 1700s and the early 1800s in Europe (Ober et
al. 1997). The mean inbreeding coefficient of the indi-
viduals in this sample is .034 (SD .015), slightly greater
than that of first cousins once removed. However, be-
cause we do not know the relationships among all 64
ancestors and because some could have been related to
each other, this may be an underestimate of the true
inbreeding level in this population (Ober et al. 1997).

Subjects were evaluated for a variety of qualitative
and quantitative phenotypes during trips to Hutterite
colonies in 1994 and in 1997–1998. Individuals who
were �15 years old ( ) donated one blood sam-N p 526
ple and one urine sample after an overnight fast and
donated one additional blood sample in the nonfasting
state; individuals !15 years old donated a blood sample
in the nonfasting state only. Six phenotypes—low-den-
sity lipoprotein (LDL), high-density lipoprotein (HDL),
triglycerides, lipoprotein (a) (Lp[a]), insulin, and serum
cortisol—were assessed in fasting blood samples, and
two (creatinine and kallikrein) were assessed in urine
samples. All studies of each person were performed on
the same day. Results of studies of qualitative, asthma-
related traits have been reported elsewhere (Ober et al.
2000). The protocol for assessing 20 quantitative traits
is described below.

In this sample, 11% of subjects had asthma, and 51%
had atopy (Ober et al. 2000). Among individuals �30
years of age, 28% had type 2 diabetes or impaired glu-
cose tolerance, 34% had hypertension, and 58% were
obese.

Immunoglobulin E (IgE).—Total serum IgE concentra-
tion was measured in duplicate in serum samples, using
the Sanofi Diagnostic Pasteur’s method (Pierson et al.
1998) and was expressed in International Units per mil-
liliter. All measurements were repeated, again in dupli-
cate, in a second independent assay. All four measure-
ments were averaged to obtain a final value.

Lung function.—Spirometry was performed with the
subject in a sitting position and wearing a nose clip. The
best forced expiratory volume at one second (FEV1) and
forced vital capacity (FVC) were measured following
criteria of the American Thoracic Society (1987). Results
were expressed as a percentage of predicted values, cor-
rected for height and gender.

Eosinophils.—Eosinophils were measured in whole
blood on the basis of a differential blood count.

Lipids.—The determinations of total cholesterol,
HDL, and triglyceride levels were performed in an au-
tomated Kodak Ektakem DT 60 unit, according to the
manufacturer’s instructions. LDL levels were calculated
from the total cholesterol, triglyceride, and HDL cho-
lesterol values, by the Friedewald formula: LDL p
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. The con-totalcholesterol � [HDL � (triglycerides/5)]
centration of Lp(a) was determined using the protocol
of Fless et al. (1989) and expressed the results in terms
of milligrams of protein per deciliter of plasma.

Insulin.—Whole blood was collected in red top Vacu-
tainer tubes after a 10-hour fast. The serum was sepa-
rated by centrifugation and immediately frozen. Serum
samples were shipped on dry ice to the laboratory, where
they were stored at –70�C until the time of the assay.
Insulin was assayed by a double-antibody technique
(Morgan and Lazarow 1963) with a lower limit of sen-
sitivity of 20 pmol/liter and an average intra-assay co-
efficient of variation of 6%. The cross-reactivity of
proinsulin in the radioimmunoassay for insulin was
∼40%.

Percent fat and fat-free mass (FFM).—Percent fat and
FFM were determined by bioelectrical impedance anal-
ysis (BIA). Wrist-ankle BIA was measured using an RJL
model 101A tetrapolar bioimpedance analyzer. Resis-
tance and reactance were measured while subjects were
lying supine, with their arms abducted at a 45� angle
and their legs separated so that the thighs did not touch.
Total body water (TBW) was calculated using the pre-
diction equation of Kushner et al. (1992). FFM was cal-
culated as TBW/0.73, and fat mass was calculated as
weight (in kilograms) � FFM (Kushner et al. 1992).

Anthropometrics.—Height was measured, by use of a
plastic stadiometer, to the nearest 3 mm, with the subject
in stocking feet; weight was measured using a Tanita
model TBF105 scale, with the subject wearing light
clothing. Body mass index (BMI) was calculated as
weight (in kilograms) divided by the square of height
(in meters). Waist and hip circumferences were measured
in centimeters, using a tape measure over light clothing.

Blood pressure.—Nurses measured blood pressure af-
ter the subject had been standing for �5 min, using
mercury-gravity sphygmomanometers and appropri-
ately sized cuffs.

Serotonin.—Serotonin was measured in whole blood
that was anticoagulated in EDTA and mixed by gentle
inversion. Samples were immediately frozen and shipped
on dry ice to the laboratory, where they were stored at
�70�C until the time of batch assay. Whole-blood 5-
hydroxytryptamine was analyzed by high-performance
liquid chromatography, with fluorometric detection (An-
derson et al. 1981); 5-hydroxytryptophan was used as
an internal standard. Intra-assay and interassay coeffi-
cients of variation were 0.8% and 3.6%, respectively
(Anderson et al. 1981).

Serum cortisol.—Cortisol was measured in fasting se-
rum samples, by the method of Taylor et al. (1983).

Urine creatinine.—Proteins were measured in first-
voided morning urine samples, by an automated mod-
ification of the pyrogallol red method (Hicks et al. 1979).

Urine kallikrein.—Kallikrein was measured in first-

voided morning urine samples, by radioimmunoassay
(Shimamoto et al. 1980).

Genetic markers

A genome screen, using 386 microsatellite markers
(Screening Set 9), was completed by the NHLBI-funded
Mammalian Genotyping Service, yielding a 9.1-cM map.
Subjects were genotyped for 1200 additional markers in
selected regions of the genome, as described elsewhere
(Ober et al. 2000).

Variance-Component Analyses

Estimating heritability.—Heritabilities for each quan-
titative trait were measured using variance-component
analysis, as described elsewhere (Abney et al. 2000;
2001).

QTL mapping.— Association-based mapping methods
were developed specifically to map QTLs in large inbred
pedigrees. The effect of an allele is modeled as a main
effect, while the relationships among all the Hutterites
are taken into account by means of additive- and dom-
inance-variance components of random polygenic ef-
fects. We include the major gene effect as a main effect
to take advantage of the extensive LD in the Hutterites.
Within this basic framework, we use two different ap-
proaches: a single-point method to detect association
under a general two-allele model (of which additive,
dominant, and recessive are all special cases) and a mul-
tipoint method to detect association under a recessive
model (called the allele-specific homozygosity-by-de-
scent [ASHBD] method). The ASHBD method takes ad-
vantage of the inbreeding present among the Hutterites.
Locus-specific and genomewide significance are assessed
by a novel permutation-based test that takes into ac-
count the relationships among individuals, as well as the
number of tests performed per locus and across the entire
genome, respectively. The methods are briefly described
below; a separate manuscript detailing the properties of
these methods is in preparation.

For the single-point general method, the model for
association with a particular allele at a given locus is as
follows: , where Y is the transformedY p Xb � Gg � e

phenotype vector, X is a matrix of covariates (usually
age, sex, and an intercept term), b is a vector of unknown
parameters, G is a matrix with two columns (the first
of which contains the number of copies of the given allele
in each individual’s genotype and the second of which
is an indicator of homozygosity for the given allele for
each individual), and g is a vector of two unknown pa-
rameters. The vector e is multivariate normal, with a
mean of 0 and covariance matrix .2 2 22Fj � Dj � IjA D E

Here, is additive variance, is dominance variance,2 2j jA D

and is environmental variance. The known matrices2jE

2F and D are determined by the pedigree structure and
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are calculated by the method of Abney et al. (2000). I
is the identity matrix. The vector g represents the effect
of the given locus on the phenotype and parameterizes
a general two-allele model. When the estimate g* of g

fell in the range g*1/ g*2 ≈ �1, we declared the model
to be approximately dominant; when Fg*1/ g*2F was
0–0.02, we declared the model to be approximately re-
cessive; and, when g*1/ g*2 �1 or ��1.5, we declared
the model to be approximately additive. Detection of a
major gene corresponds to rejection of the null hypoth-
esis g p 0. Conditional on the genotype data, the effi-
cient score statistic for this test is approximately the F
test for significance of g in the generalized regression, in
which maximum-likelihood estimates of the needed var-
iance components under the null model are inserted. This
test is performed for each allele at each locus.

For the ASHBD method, the model for association
with a particular allele at a given locus is of the same
mathematical form as shown above, but now G is a
vector that gives, for each individual, the indicator of
homozygosity by descent for a specific allele, and g is
an unknown scalar. As before, detection of a major gene
corresponds to rejection of the null hypothesis .g p 0
In this case, unlike that of the previous model, G is not
observed. To calculate an approximation to the efficient
score statistic for this case, we first calculate, for each
individual, the conditional probability of homozygosity
by descent (autozygosity) for the particular allele at the
locus, given the multipoint genotype data for the indi-
vidual and the known pedigree relationship between the
individual’s parents. This is done by constructing a Mar-
kov approximation to the binary process that represents
autozygosity/nonautozygosity for each individual and
then applying a hidden Markov method. From this con-
ditional probability, from the maximum-likelihood es-
timates of the needed variance components under the
null model and from estimates of the other free param-
eters obtained by generalized regression, we calculate an
approximation to the efficient score statistic. This test
is performed for each allele at each locus.

Standard asymptotic theory combined with Bonfer-
roni correction gives locus-specific P values, and, because
the effect of interest is a main effect, these P values are
fairly robust to deviations from normality of the resid-
uals of the transformed phenotype values. In addition,
to guard against such deviations from normality, we cal-
culate P values by use of a permutation-based approach,
in which we preserve the covariance structure due to
relatedness among individuals. We first obtain the phe-
notypic residuals under the model with . We theng p 0
obtain a Cholesky-type decomposition of the estimated
covariance matrix for these residuals and use it to lin-
early transform the phenotypic residuals to be approx-
imately uncorrelated. We then permute the uncorrelated
linearly transformed phenotypic residuals and transform

them back, to construct new phenotype data for the
individuals. For the case of multivariate normality, this
is, asymptotically, a true permutation test, and, under
deviations from normality, it would be expected to per-
form better than the theoretically determined P value.
Our permutation-based assessment of significance al-
lows us to obtain both locus-specific and genomewide
P values, with appropriate correction for multiple tests.
In fact, we find that the locus-specific P values from
asymptotic theory are in close agreement with those
from the permutation-based test. For obtaining ge-
nomewide P values, this method is applicable when
positions of markers are independent of the observed
association signals, under the null hypothesis (e.g., ge-
nome-screen data), whereas there is no such restriction
for locus-specific P values.

Results

Heritability Studies

The population means and standard deviations and
estimates of heritability (h2 and H2) for each quantitative
trait are shown in table 1. The dominance variance of
a trait measures the variance due to the interaction of
the two alleles at a locus, summed over the genome. This
is different from the additive variance, which measures
the variance due to mean effects of single alleles. In ad-
dition, a nonzero dominance variance implies nonad-
ditive effects at one or more loci, whereas a nonzero
additive variance does not necessarily indicate that there
are any QTLs that follow a strictly additive model, con-
cepts that are discussed in detail in articles published
elsewhere (Abney et al. 2000, 2001). Five traits had a
significant dominance variance, thereby yielding esti-
mates of broad heritability (H2) that were larger than
the estimates of narrow heritability (h2): LDL, FFM,
waist-hip ratio (WHR), SBP, and serotonin. The heri-
tabilities of the remaining 15 traits could be accounted
for entirely by additive genetic variances, and therefore
the estimated broad and narrow heritabilities (H2 and
h2, respectively) were the same. Two traits (WHR and
SBP) had estimated narrow heritabilities of 0. However,
the standard errors of these estimates were 0.10 and
0.15, respectively, putting their 95% confidence intervals
(CIs) within the range of (in the case of WHR) or close
to the lower estimate of (in the case of SBP) heritabilities
in outbred populations.

For nearly all traits with additive variances only, es-
timates of heritability in the Hutterites are in the range
of estimates in other populations (table 2). The lower
heritability of the phenotype percent fat in the Hutterites
compared with other populations (0.48 vs. 0.62–0.80)
may reflect the inclusion of shared familial environment
in previous estimates and the known importance of diet
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Table 1

Attributes and Estimates of Narrow (h2) and Broad (H2) Heritabilities for 20 Quantitative Traits

Phenotype N Transformation Covariates Mean SD h2 H2

IgE 722 Log Age, sex 97.6 IU/ml 254 .63 .63
FEV1 (% predicted) 654 Log Age, age2 100.06 15.36 .35 .35
FEV1/FVC 654 … Age, sex .96 .08 .41 .41
Eosinophilia 575 Log Age, sex .140 K/ml .105 .32 .32
LDL 451 Cube root Age 128.4 mg/dl 39.0 .36 .96
HDL 484 Cube root Age, sex 47.3 mg/dl 13.8 .63 .63
Triglycerides 484 Log Age, sex 134.5 mg/dl 92.3 .37 .37
Lp(a) 374 Log Age, sex 2.88 mg/dl 3.64 .79 .79
Fasting insulin 497 Log of log Age 99.34 pmol/liter 56.6 .32 .32
BMI 666 Log of log Age, age2, age3, sex 24.5 6.1 .54 .54
Percent fat 663 … Age, age3, sex 30.61 10.83 .48 .48
FFM 664 Square root Log (age), height2, sex 45.0 13.3 .45 .76
WHR 514 Cube root Age, sex .86 .09 0 .86
Adult height 516 … Age, sex 66.23 in 3.48 .83 .83
SBP 623 Log Age, sex 122 mm Hg 14.4 0 .45
DBP 623 Square root Age, age2, sex 80 mm Hg 10.0 .21 .21
Cortisol 518 Log Sex 22.2 mg/dl 6.2 .45 .45
Creatinine 526 Square root Age, sex 162.9 mg/dl 68.8 .36 .36
Kallikrein 436 Cube root Age 136.1 ng/day 162.0 .37 .37
Serotonin 567 Log Age, sex 191 ng/ml 79 .52 .99

NOTE.—Means and standard deviations (SD) correspond to untransformed trait values. Traits with a significant
dominance variance component are underlined. See Material and Methods section for full description of phenotypes.

and other lifestyle factors on this trait. The wide range
of estimates for some traits is not surprising, because
these estimates are derived from diverse population sam-
ples. Nonetheless, heritability estimates were consider-
ably higher in the Hutterites than in other samples for
three of four traits with dominance variances: LDL (.96
vs. .34–.50), FFM (.76 vs. .65), and WHR (.86 vs.
.06–.50). This could result, in part, from an underesti-
mation of heritabilities in previous studies if the domi-
nance variance was present but not measured. Estimates
of heritability for urinary creatinine, urinary kallikrein,
and whole-blood serotonin have not been reported for
other populations.

Genomewide Association Mapping

The most significant locus-specific P value on the ge-
nomewide screen and the corresponding genomewide P
values are shown in table 3 and table 4, for each phe-
notype, by both the multipoint recessive and single-point
general two-allele–model association tests. The ASHBD
method tests the hypothesis that homozygosity by de-
scent for a specific allele is significantly associated with
the trait. The latter tests the hypothesis that a specific
allele is associated with the trait value, where any two-
allele model is allowed as the alternative model. For the
general two-allele method, shown in table 4, we report
an approximate model for the detected allele (additive,
dominant, or recessive). The results of the full genome
screen for these traits will be presented in separate
reports.

Using the multipoint ASHBD method, we found that
the strength of the most significant association, assessed
by locus-specific and genomewide P values, varied dra-
matically across the traits, from a locus-specific P value
of 5.8 # 10�6 (genomewide ) for triglyceridesP p .005
to a locus-specific P value of 0.0041 (genomewide

) for urinary creatinine. Loci for five traitsP p .780
(LDL, triglycerides, Lp(a), SBP, and serum cortisol) met
genomewide significance ( ); for one trait (sero-P ! .05
tonin), the P value was so close to this threshold that it
cannot be determined, on the basis of 1,000 simulations,
whether it is above or below this threshold ( ;P p .044
95% CI 0.031–0.057). For one additional QTL (DBP),
the P value was close enough to .10 that it could not
be determined on the basis of 1,000 simulations whether
it was above or below this threshold ( ; 95%P p .117
CI 0.097–0.14). When ASHBD mapping was used, 3 of
the 5 traits with a dominance variance and 3 of the 15
traits with only additive variances had loci with ge-
nomewide P values ! .05. There were no particularly
strong signals (all locus-specific P values 1.001) across
the genome for half the traits when the multipoint
ASHBD mapping was used.

When the general two-allele model was applied, the
strength of the most significant association varied from
a locus-specific P value of (genomewide�117.9 # 10

) for Lp(a) to a locus-specific P value of .0075P ! .001
(genomewide ) for the ratio FEV1/FVC. TheP p .987
best-fitting model for both traits was approximately ad-
ditive. Loci for two traits—Lp(a) and cortisol—met ge-
nomewide significance ( ); the best-fitting modelP ! .05
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Table 2

Heritability Estimates in the Hutterites and Other Populations for 17 Quantitative Traits

Phenotypea H2b

Heritability
in Other
Studies References

IgE .63 .47–.79 Hopp et al. 1984; Palmer et al. 2000
FEV1 (% predicted) .35 .06–.52 Palmer et al. 2000; Wilk et al. 2000; Whitfield et al. 1999
FEV1/FVC .41 .45 Wilk et al. 2000
Eosinophilia .32 .30 Palmer et al. 2000
LDL .96 .34–.50 Mitchell et al. 1996; Edwards et al. 1999
HDL .63 .42–.83 Brenn 1994; Mitchell et al. 1996; Perusse et al. 1997; Edwards et al. 1999
Triglycerides .37 .19–.55 Brenn 1994; Mitchell et al. 1996; Perusse et al. 1997; Edwards et al. 1999; Shearman et al. 2000
Lp(a) .79 .51–.90 Mitchell et al. 1996; Rainwater et al. 1997; Scholz et al. 1999; Hong et al. 1995
Fasting insulin .32 .35–.54 Mitchell et al. 1996; Narkiewicz et al. 1997
BMI .54 .32–.59 Borecki et al. 1998; Cheng et al. 1998; Rice et al. 1997
Percent fat .48 .62–.80 Rice et al. 1997; Faith et al. 1999
FFM .76 .65 Rice et al. 1997
WHR .86 .06–.50 Mitchell et al. 1996; Sellers et al. 1994; Selby et al. 1990
Height .83 .66–.78 Silventoinem et al. 2000; Chatterjee et al. 1999; Luo et al. 1998
SBP .45 .18–.54 Brenn et al. 1994; Mitchell et al. 1996; Rotimi et al. 1999; Cheng et al. 1998; An et al. 1999;

Gu et al. 1998
DBP .21 .28–.44 An et al. 1999; Rotimi et al. 1999; Mitchell et al. 1996; Gu et al. 1998; Brenn 1994
Cortisol .45 .45 Saljukov et al. 1992; Meikle et al. 1988

NOTE.—No previous studies of heritability are available for the three traits included in the present study but not shown in this table.
a Traits for which H2 1 h2 are underlined.
b Values from the present study.

was approximately additive in both cases. The additive
loci that were significantly associated with Lp(a) and
cortisol differed from the locus significantly associated
with each of these traits by the ASHBD method. A QTL
for one additional trait (BMI) had a P value close enough
to .10 that it could not be determined on the basis of
1,000 simulations whether it was above or below this
threshold ( ; 95% CI 0.090–0.13). The best-P p .109
fitting model for BMI was approximately additive.
Twelve traits showed no particularly strong evidence for
association with alleles at any locus (all locus-specific P
values 1.001) by this method. For eight traits (IgE, FEV1,
FEV1/FVC, eosinophils, HDL, height, urinary creatinine,
and urinary kallikrein), no QTLs with a locus-specific
P value !.001 were detected by use of either method.

The locus most associated with each trait by ASHBD
mapping differed from the locus most associated by the
general two-allele model for all but two traits. Alleles at
D19S591 provided the best evidence for association with
insulin, by both ASHBD and the general two-allele
model; and alleles at D12S366 provided the best evi-
dence for association with urinary creatinine, by both
models. Additionally, despite correlations between many
of these phenotypes, the locus most associated with each
trait was unique in most cases. Only four pairs of traits
were each associated with alleles at the same locus. These
could represent the pleiotropic effects of allelic variants
at a single linked QTL or alleles at multiple linked QTLs,
each influencing variation in one trait. For example, SBP
and DBP were associated with alleles at D11S1993; DBP

and urinary creatinine were associated with alleles at
D12S366; percent fat and BMI were associated with
alleles at D14S1426; and serotonin levels and WHR
were associated with alleles at D18S1371. The latter
association is particularly intriguing, given the associa-
tions between serotonin and appetite regulation (Blun-
dell 1984; Leibowitz and Shor-Posner 1986; De Fanti et
al. 2001).

The relationship between estimates of heritability and
strength of the signal on a genomewide screen is shown
in figure 1 for each mapping approach. The heritability
for the six traits that had QTLs with genomewide P
values !.05 ranged from .37 (for triglycerides) to .99
(for serotonin). Unexpectedly, three traits with herita-
bility estimates 1.60 (adult height, HDL, and IgE) pro-
vided no particularly strong signals on a genomewide
screen by either method. In fact, the estimate of heri-
tability and the most significant locus-specific P value
were not correlated (ASHBD: Spearman’s ,r p .127

; general: Spearman’s , ),P p .592 r p �.108 P p .649
indicating that heritability estimates per se are poor pre-
dictors of how easy it will be to detect a significant
association on a genomewide screen.

Discussion

Dissecting the genetics of common diseases with com-
plex modes of inheritance is a major challenge in human
genetics (Lander and Schork 1994). A number of novel
approaches for addressing the complexity of these con-
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ditions and overcoming the methodological limitations
inherent in studies of human families have been used,
with varying degrees of success. A better understanding
of the genetic models that underlie susceptibility would
enhance our ability to “custom design” mapping and
positional cloning strategies for complex phenotypes and
would facilitate the search for susceptibility loci of many
common diseases. Our studies in the Hutterites have
allowed us to assess the genetics of a variety of quan-
titative phenotypes in a genetically homogeneous pop-
ulation that shares a relatively uniform environment.
This allows us to make comparisons across phenotypes
and to draw inferences about the genes that influence
quantitative traits that are associated with susceptibility
to common diseases.

The lack of correlation between estimates of herita-
bility and the strength of signals on genomewide screens
was surprising. Although the utility of heritability es-
timates as a measure of the overall importance of genetic
factors influencing trait values has long been criticized
(Morton 1974; Lewontin 1976), this measure is still
often used to justify mapping studies or to prioritize
traits for mapping. The results reported here demon-
strate that heritability estimates do not reflect the un-
derlying genetic models and therefore should be used
cautiously when prioritizing phenotypes for mapping
studies or when making decisions regarding appropriate
analytical strategies. Among the six traits with ge-
nomewide significance, three had heritability estimates
!.50, indicating that major genes influence the variation
in some traits with relatively low heritabilities. The
strong signals for cortisol, triglycerides, and SBP—
despite their relatively low heritabilities—suggest the
presence of at least one major QTL influencing variation
in these traits. Our results for Lp(a) and serum cortisol
suggest that there may even be two major QTLs for
each trait, one detected by the ASHBD and one by the
general two-allele method. On the other hand, some
traits with relatively high estimates of heritability (e.g.,
adult height) may have many loci that each influence
the trait value in small, and possibly negligible, ways.
For these traits, traditional linkage approaches may
have limited ability to dissect their genetic bases, and,
in the present study, even association-based tests had
little power.

Among traits with high heritabilities (1.60), the best
signals on genomewide screens ranged from P p

(IgE by the ASHBD method) to 7.8 # 10�11.0037
(Lp[a] by general model). The large heritable compo-
nent of some of these traits (such as height, HDL, and
IgE) is apparently a result of the relatively small effects
of many genes and may best fit a polygenic model in
which variation is accounted for by the small effects of
many loci. For others traits with high heritabilities (such
as Lp(a), LDL, and serotonin), variation is likely a result

of one or more major QTLs. Of course, height is the
textbook example of a human polygenic trait, and the
LPA locus maps to chromosome 6q27, just 1 cM from
our most significant marker (Weitkamp et al. 1988).
Genetic variation at the LPA locus is known to account
for a substantial proportion of the phenotypic variation
in Lp(a) levels (Boerwinkle et al. 1989). Our data are
consistent with these findings and further suggest the
presence of a second major locus for Lp(a).

Overall, more loci reached or approached genome-
wide significance by multipoint ASHBD mapping than
by the general single-point method. Furthermore,
whereas only 3 of the 10 loci with genomewide P values
below or not significantly different from .10 were well
approximated by an additive model, 7 of the loci reach-
ing this level of significance were detected on the basis
of a recessive model. These findings may indicate that
the most important loci influencing quantitative trait
variation are more often recessive than additive. If so,
founder populations may be particularly well suited for
QTL mapping studies, because the ability to detect loci
with recessive alleles should be enhanced in these pop-
ulations compared with outbred populations. On the
other hand, we may have had better power to detect
loci when we used the ASHBD method, because only
these estimates were multipoint, whereas the general
model was a single-point estimate.

A significant dominance variance was detected for five
traits, indicating that at least one locus with a nonaddi-
tive effect influences trait values, and, in fact, the most
significant loci for these five traits were recessive. Al-
though proportionally more of the traits with nonzero
dominance variances had at least one locus reaching a
genomewide threshold of 5% than did traits with only
additive variances (3 of 5 vs. 3 of 15), the numbers are
too small to draw conclusions regarding the ease of
mapping traits with dominance variances versus those
with additive variances only. However, we note that the
most significant association in this study was with a
QTL that had an approximately additive genetic model
for Lp(a), a trait whose distribution was accounted for
entirely by additive genetic variance. In addition, among
the eight QTLs that reached genomewide significance
( ), five corresponded to traits with additive var-P ! .05
iances only. Therefore, QTLs for phenotypes with sig-
nificant dominance variances are not necessarily those
that will be detected on genomewide screens.

Several additional factors specific to this study may
have influenced our results. First, the fortuitous location
of genetic markers relative to the location of the sus-
ceptibility loci likely influenced the ability to detect as-
sociations. For example, the framework marker
D6S305 lies !1 cM from the LPA locus, which signif-
icantly affects Lp(a) levels (Weitkamp et al. 1988). The
highly significant P value that we observed with this



Table 3

Results of Genomewide Screens for 20 QTLs: Analysis by Multipoint ASHBD

Trait Locus
Allele Size

(bp)

Distance
from pter

(cM)
Calculated

Pa

Permutation
Pb GW Pb

IgE D3S1764c 233 153 .0037 .002 .780
FEV1 (% predicted) D11S1392c 212 43 .0017 .001 .527
FEV1/FVC D5S820c 198 160 .0038 .002 .846
Eosinophilia D1S547c 304 268 .0026 .002 .752
LDL D19S433c 211 52 .00011 !.001 .035
HDL D18S535c 151 64 .0025 .002 .501
Triglycerides D2S410c 170 125 5.8 #10�6 !.001 .005
Lp(a) D18S843c 185 28 6.9 # 10�5 !.001 .029
Insulin D19S591c 108 10 .00091 .001 .343
BMI D19S587 151 59 .0014 .003 .531
Percent fat D1S3721c 212 73 .00031 .001 .148
FFM D3S3547 224 55 .00088 !.001 .405
WHR D7S817c 157 50 .0026 .004 .612
Adult height D3S2459c 195 119 .0022 .001 .416
SBP D8S1119c 182 101 7.0 # 10�5 !.001 .031
DBP D12S366 191 133 .00036 !.001 .117
Cortisol D1S3723c 194 140 3.7 # 10�5 !.001 .029
Creatinine D12S366 189 133 .0041 .001 .780
Kallikrein D17S1308c 308 1 .0038 .004 .822
Serotonin D18S1371c 145 116 .00011 !.001 .044

NOTE.—Traits with genomewide are underlined.P ! .05
a Bonferroni-adjusted values.
b Based on 1,000 simulations.
c Framework marker.

Table 4

Results of Genomewide Screens for 20 QTLs: Analysis by General Two-Allele Model

Trait Locus
Allele Size

(bp)

Distance
from pter

(cM)
Calculated

Pa

Permutation
Pb

Best-Fitting
Model GW Pb

IgE D5S1505c 243 130 .0031 .005 Additive .768
FEV1 (% predicted) D3S1768c 202 62 .0022 .001 Additive .691
FEV1/FVC D1S2644 227 44 .0075 .006 Additive .987
Eosinophilia D2S1790 296 106 .0040 .004 Additive .777
LDL D19S918 148 70 .0013 .001 Recessive .287
HDL D20S901 266 26 .0037 .002 Recessive .953
Triglycerides D11S2000c 221 101 .00071 !.001 Additive .178
Lp(a) D6S305c 228 166 7.9 # 10�11 !.001 Additive !.001
Insulin D19S591c 100 10 .00091 .001 Recessive .448
BMI D14S1426c 137 126 .00019 !.001 Additive .109
Percent fat D14S1426c 137 126 .00037 !.001 Additive .234
FFM D3S1766c 220 79 .0014 .002 Recessive .629
WHR D18S1371c 141 116 .00075 .002 Recessive .342
Adult height D10S219 76 101 .0012 .001 Additive .486
SBP D11S1993c 236 54 .0016 .002 Additive .544
DBP D11S1993c 242 43 .0015 .002 Additive .496
Cortisol D11S1981c 146 21 7.6 # 10�5 !.001 Additive .033
Creatinine D12S366 195 133 .0020 .001 Additive .621
Kallikrein D8S373c 221 164 .0023 .003 Additive .720
Serotonin D15S153 208 62 .00046 .001 Additive .146

NOTE.—Traits with genomewide are underlined.P ! .05
a Bonferroni-adjusted values.
b Based on 1,000 simulations.
c Framework marker.
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Figure 1 Relationship between heritability and the significance
of the strongest association on genomewide screens for 20 QTLs.
Square symbols represent traits with dominance variances (i.e., H2 1

h2); circles represent traits with additive variance only (i.e., H2 p h2).
Locus-specific P values are shown on the bottom axis, and approximate
genomewide P values are shown on the top axis. A, Results of ge-
nomewide association mapping by use of the ASHBD method. B, Re-
sults of genomewide association mapping by use of the general two-
allele model. Blackened symbols represent loci for which the
best-fitting model is approximately recessive, and unblackened sym-
bols represent loci for which the best-fitting model is approximately
additive.

marker and Lp(a) is a result of the close proximity of
these two loci. Had we sampled only a locus that was
7 cM away (D6S1277) from this known major locus
for Lp(a), we would have observed a locus-specific P
value of .004 and a corresponding genomewide P value
1.70. Thus, the placement of genetic markers can have
a major impact on the ability to detect association with
additive alleles, and this observation suggests that fairly
dense maps (!!5 cM) may be required to detect these
loci, even in a young founder population. This could

account for the relatively weak signals observed for
some of the traits that did not reach a genomewide
threshold of 10%. The placement of additional markers
around the loci with the best linkage signals for some
of these traits may yield additional significant loci. On
the other hand, it is questionable whether adding more
markers will detect QTLs for height, IgE, or HDL that
would reach genomewide significance in this popula-
tion. In fact, most of the 1200 nonframework markers
in this sample are in genomic regions that have been
linked to, or associated with, asthma or the associated
phenotype, IgE (Ober et al. 2000). Yet, despite relatively
dense maps on chromosomes 5q, 6p, 12q, and 11q and
in candidate genes related to IgE levels (such as the IL4,
IL13, IL4RA, FCREB1, and IFNG loci) (Ober and
Moffatt 2000), no strong signals were observed for this
phenotype among the Hutterites.

A second important feature of the present study is
that it was population based, with nearly complete as-
certainment of all members of the population. Subjects
were unselected with respect to disease or to any of the
phenotypes studied. This allows us to obtain unbiased
estimates of the components of variance but may limit
the ability to generalize from our results to samples
collected using different ascertainment schemes. In par-
ticular, our study design will allow us to detect genes
that influence normal variation in these quantitative
traits but not necessarily loci that contribute to disease.
For example, IgE levels in the Hutterites are lower than
those reported for families ascertained on the basis of
asthma or atopy (Wjst et al. 1999; Xu et al. 2000; Lester
et al. 2001), even among Hutterites with asthma (Ober
et al. 2000). The contribution of individual genes, as
well as the power to detect linkage to loci that influence
high IgE levels, may be better among families ascer-
tained through asthmatic or atopic individuals than in
the Hutterites (for examples, see Xu et al. 2000 and
Mathias et al. 2001). On the other hand, it is difficult
to correct for ascertainment bias in such highly selected
samples, although correction for ascertainment is crit-
ical for estimating QTL effect size (Commuzzie and Wil-
liams 1999; Blangero et al. 2001).

Characterizing variation in specific genes that influ-
ences susceptibility to common diseases could have a
significant public health impact. The ability to identify
individuals at risk for particular diseases would allow
for both lifestyle and pharmaceutical interventions that
could possibly delay disease onset and/or ameliorate the
clinical course. A first step in dissecting the genetics of
common diseases is to better understand the underlying
genetic models and the relative role of specific genes in
disease etiology. Founder populations, such as the Hut-
terites, with reduced environmental variance may offer
unique advantages, not only for identifying disease
genes (Lander and Schork 1994; Kruglyak 1999; Wright
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et al. 1999) but also for providing insights into the
genetic architecture of common human diseases.
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